• Skip to primary navigation
  • Skip to main content
  • Skip to footer

Center for RNA Biomedicine

Ann Arbor, MI

MembershipGive online

MENUMENU
  • Home
  • About
    • About RNA
    • Mission
    • Become a Member
    • History
    • Financial Support
    • Diversity, Equity & Inclusion
  • Research
    • Core Facilities
      • Bru-Seq Lab
      • Single Molecule Analysis in RT
    • Scientific Articles
    • Scientific Articles Highlights
    • Pilot Grants (2017–18)
  • People
    • U-M Faculty Members
    • RNA Faculty Scholars
    • Faculty Testimonials
    • Featured Researchers
    • Leadership and Staff
      • Directors
      • Executive Committee
      • Strategic Advisory Board
      • Student & PostDoc Council
      • Staff
  • Resources
    • Grant Sprints
    • Grant Proposal Support
    • Recruitment Opportunities
    • Publication Support
    • RNA Skills
      • RNA Skill Share
      • Technique Demo Videos
      • RNA Research Scholar Exchange Supplemental Fund
    • U-M RNA Resources
      • U-M Research Cores
      • RNA courses at U-M
      • U-M Depts & Centers
    • Non U-M RNA Partners
  • Events
    • Calendar
    • Symposia
      • 2023 Symposium
      • 2022 Symposium
      • 2021 Symposium
      • 2020 Symposium
      • 2019 Symposium
      • 2018 Symposium
      • 2017 Symposium
      • 2016 Inaugural Symposium
    • RNA Innovation Seminars
      • 2022-2023 Seminars
      • 2021-2022 Seminars
      • 2020-2021 Seminars
      • 2019-2020 Seminars
      • 2018-2019 RNA Seminars
      • 2017-2018 RNA Seminars
      • 2016-2017 RNA Seminars
      • 2015-2016 RNA Seminars
    • RNA Collaborative Seminar Series
  • News
    • In the Media
  • Our Publications
    • Weekly News
      • Weekly News Archive
    • Magazine and Report
      • RNA Translated 2021, “RNA Therapeutics”
      • RNA Translated 2020, “The Year of the RNA Virus”
    • Center’s Brochure
    • Join our Mailing List
  • Giving
  • Contact

Seeing is believing: The cutting edge of watching single molecules inside human cells

02/18/2020

The cell is a complex network of interacting components, or molecules, each of them with its own characteristics and all of them together functioning as a living system. Each of the molecular processes and interactions in the cell bears the risk of becoming dysfunctional, resulting in disease. Biomedical research into processes that power the cell lays the foundation for major therapeutic breakthroughs. However, the minuscule length scales and high speeds at which these intracellular processes take place make it very challenging to observe them directly within a single cell.

Nils Walter’s team at the University of Michigan, Chemistry Department and Center for RNA Biomedicine, has reviewed the latest research on using high-resolution, single molecule fluorescence microscopy tools to study the interactions between molecules in live human cells in real time. The review covers research reported in 85 publications over the last 5 years, aiming to consolidate the developments and disseminate the techniques that can follow multiple molecules at once (“multiplexing”). These techniques are relatively easy to implement, and are becoming increasingly available and affordable.

https://rna.umich.edu/wp-content/uploads/2020/02/1-s2.0-S1097276519301753-mmc3.mp4

Red RNA molecules are docking onto green processing bodies containing RNA degrading enzymes.

Two major technological advances have been transforming the field of single molecule, single cell studies. Advances in fluorescence microscopy and clever engineering now offer very high-sensitivity and high-resolution capabilities, allowing researchers to see and record intracellular interactions using a growing toolbox of fluorescent tags to track cellular components. At the same time, the field of RNA biology has made great strides in understanding the link between aberrant gene regulation and disease.

Multiplexed techniques, able to follow multiple molecular species, are being progressively applied to intracellular contexts, becoming more biologically relevant as they get closer to disease physiology.

“Multiplexing is the opportunity to look at cell component interactions,” explains Saffron Little, one of the five co-authors of this review. “And the advancement of these technologies has allowed us to view these interactions in real time.”

“Most labs could now easily uptake multiplexed technology” says Andreas Schmidt, the lead author of this article. “We’d like to see the adoption of this technology speed up, because it can lead to major therapeutic discoveries.”

https://rna.umich.edu/wp-content/uploads/2020/02/1-s2.0-S1097276519301753-mmc4.mp4

Red RNA molecules diffusing within a cell containing green RNA granules termed processing bodies

For example, one of the clever new tools in the box are appendages to an important molecule class termed RNA that light up when dyes are added, making single molecules visible as they move around the cell. Such artificial RNA appendages were inspired by a class of naturally-occurring RNA architectures that can bind smaller molecules termed metabolites as those we take up from our food.

Being able to see in real time the making of individual protein molecules is one additional recent breakthrough. All of these new imaging tools are quickly advancing fundamental research, opening the door to our understanding of the molecular processes that underlie normal physiology, diseases and perhaps even their remedies.

Citation: Schmidt, A, Gao, G, Little, SR, Jalihal, AP, Walter, NG. Following the messenger: Recent innovations in live cell single molecule fluorescence imaging. WIREs RNA. 2020;e1587. https://doi.org/10.1002/wrna.1587

Filed Under: Publication Highlights

Footer

Copyright © 2023 University of Michigan Board of Regents